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We show that an ethylenic coupler provides a very strong intramolecular magnetic interaction. A recently
synthesized nitronyl nitroxide derivative, D-NIT2, is investigated by ab initio quantum chemical methods.
The broken symmetry approach yields a coupling const&dtl K that is in good agreement with the observed
value in solid state.

The research on new organic molecular magnets received a 21
considerable amount of attention in the last few decadédse 06 W13 4 23
exceptional stability as well as the ability to generate cooperative " ] 13 14 N 23
property made nitronyl nitroxides and imino nitroxides fascinat- 4 NS /_(‘ 17
ing systems for both synthetic chemistry and theoretical sciences. 10 » N 72 24
The beta-phase gf-nitrophenyl-nitronyl nitroxide radical was 9 1 4z 13_; 23
the first recognized example of a pure organic magrelarge g 3 "‘2 0
number of nitronyl nitroxide derivatives has been investigated -0 20
theoretically as well as experimentally till nciwv. 7

Barone et af. theoretically investigated bis(imino) nitroxide  Figure 1. Diradical under investigation: D-NIT2.
and concluded that most of the spin density along theNoS ] o )
C—N moiety of each monomeric unit can be attributed to the the problem of spin contamination and an incorrect representa-
unpaired electron in the singly occupied molecular orbital. This tion of the singlet state of a diradical as a single determinant.
observation indicates that a coupler that is extensively conju- 1he restricted (open-shell) HartreBock (ROHF) theory over-
gated can give rise to a strong magnetic interaction betweencomes the problem of spin contamination but does not ad-
the monomeric radical centers. In fact, this has been experi- €quately account for spin polarization, thereby requiring the
mentally demonstrate® ¢ Nevertheless, the strength of the study of _correlatlon effects. P_ost-Hartreléock methods are
magnetic interaction depends on the extent of mixing of the computationally very expensive and even today cannot be
magnetically active orbitals, which decreases as the coupler sizeefficiently performed on large systems. Therefore, we have
increases. Therefore, Ullman’s nitroxide biradical is expected adopted the density functional treatment (DFT), especially the
to have the largest (negative) value of the magnetic exchangeB3LYP methodplogy, for including the correlation effec_ts._We
coupling constant). Steric effects, however, stabilize the have also considered the bquen-symmetry method within the
biradical into a twisted conformation, and the measuredlue ~ framework of UB3LYP. This approach was proposed by
is —448 K5 This leads us to believe that the nitroxide biradical Ginsber§ and further standardized by Noodlerftand explored
with an ethylenic coupler (D-NIT2), Figure 1, would have a by many other authefd.The exchange coupling constant for
larger negativel value. The latter was indeed observed to be the interaction of two magnetic centers a and s defined
—504 K in solid staté. by the HeisenbergDirac-van Viek (HDVV) effective Hamil-

The objective of this report is to theoretically verify the tonianH = — 2J.5:-S,. However, a trustworthy calculation of
proposition that a very strong intramolecular magnetic interac- the magnetic exchange coupling constant can be done by
tion can be provided by an ethylenic coupler. To our knowledge, COMputing the total energy value of the maximum spin state,
this work represents the first ab initio investigation of the Emax,and that for the broken symmetry stafigs. Yamaguchi
magnetic coupling between radical centers joined by an ethelynic€t al*' proposed a spin projection procedure where the
fragment. In a future broad paper to be published, we would dependence ofR,upon the overlap is replaced by a dependence
aim to establish that the strength of magnetic interaction UPON the spin contamination of the broken-symmetry solution,
decreases with the increase in size of the conjugated couplerSummarized by 2y = 2(Ess — Ewax)/((Bliax — [Fds). In

A study of the interaction between two magnetic centers the present case, the maximum spin state is triplet (T) and the
requires spin-polarized solutions. The unrestricted HartFerk broken symmetry (BS) state has t#[value around 1.
(UHF) methodology considers spin polarization, but suffers from 1€ molecular geometry of the diradical has been optimized

by the ROHF methodology with the 6-311G** basis set for both

*To whom correspondence should be addressed. E-mail: sndatta@ Singlet (S) and triplet (T) states. Geometry optimization revealed
chem.iitb.ac.in. an almost planar molecule that matches the reported X-ray
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Figure 2. Scheme of spin alternation in UHF for the diradical.

TABLE 1: Results of Broken-Symmetry Density Functional
Computations (UB3LYP) Performed on 6-311G** Optimized
Geometry

Egsin a.u. Emax in a.u. Egs — Er
basis set (C(Bgs) (C(Bhhax) inK JinK
6-31+G** —1145.0822951—-1145.0806977 —505.4 —540.7
(1.1273) (2.0620)
6-311+G*  —1145.3287469—-1145.3271496 —505.3 —540.9
(1.1286) (2.0629) Figure 3. AML1 spin isosurfaces for the diradical in (a) singlet and (b)
6-31H+G* —1145.3289533-1145.3273567 —505.1 —540.6 triplet states. The singlet state exhibits a greater spin alternation, thereby
(1.1285) (2.0629) indicating an antiferromagnetic coupling between the two radical
centers.
crystallographic geometry in ref 6. The calculated geometrical
parameters are given as Supporting Information. In conclusion, we have computationally derived the nature

The broken-symmetry density functional computations (BS- of the intramolecular magnetic interaction in a nitronyl nitroxide
DFT) are performed on the triplet optimized geometry with derivative by using large enough basis sets, and shown that the
increasingly higher basis sets, namely, 6F&*, 6-311+G**, ethylenic linkage actively participates in a large, perhaps the
and 6-31#+G**. Computed total energies for both BS and T  largest, antiferromagnetic coupling between the two radical
states and the calculatddalues are given in Table 1. We have centers. The calculated intramolecular magnetic exchange
used the Gaussian Y&oftware for our computations. Both of  coupling constant is-541 K, in good agreement with the
the states become more stable as the number of basis functiongxperimental value of-504 K.
increases. ThEP[value remained almost same for both of the
states, 1.13 and 2.06, respectively. The BS state has turned out Acknowledgment. We thank the Department of Science and
to be more stable than the T state for every basis set. The naturél'echnology for financial support.
of the intramolecular magnetic interaction is manifestly anti-
ferromagnetic. The energy difference remains constant at about
—350 cnt! (—505 K) while the basis set is increased consis-
tently. This energy difference is apparently in exact agreement
with the observed value. However, there is an unequal spin
contamination in the two states, and using the formula from

Supporting Information Available: Optimized geometrical
parameters and complete ref 12. This material is available free
of charge via the Internet at http:/pubs.acs.org.
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